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1. Introduction

Writing p^=exp. (—Xj), Aj>0, the models we are concerned
with have the forms

p

3^(0=2 «,p/+e(0, (I.l)
7=1

and
p

J'(0=«o+ 2 p/+s(0, (1.2)
7=1

where the e(r) are random errors assumed to be independent with
zero means and the parameters are assumed to satisfy the conditions

for (l.I) and a„>0 for (1.2).

For the non-linear models above, application of the Least
Squares method results in equations which are in general solvable only
by iteration. The Least Squares computations have several unusual
features when applied to linear combinations of exponentials. The
most unusual aspect is the frequent failure of the iterative computar
tion schemes to converge. Secondly, the iterative process converges
but the resulting estimators may not be the least squares estimates.
These pitfalls of Least Squares computations have been discussed by
Cornfield er. a/. [I960]. For successful implementation of iterative
procedure, one needs 'good' initial estimates of parameters appearing
in a non-linear fashion in these models. Sometimes the initial
estimates may provide the most consistent estimates, of the para
meters if facilities for computationof iterative least squares are not
available.
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Cornell [1962] has proposed a general method which provides
a simple and direct procedure for estimating the non-linear para
meters in the case of the two general models (1.1) and (1.2). Since
the method is based on independent partial totals of ttie sample
observations, it has the disadvantage that the estimators obtained are
not of Pj, but of some integral power of p^. Agha [1971] has given
another method which overcomes the disadvantage of Cornell's
method of providing estimators of some integral power p/, but
utilizes dependent partial totals of the sample observations. Also it
assumes that all aj>0 in the model (1.1). Foss [1969] has proposed
a method which is computer oriented and arrives at the initial
estimates by a least square 'peeling-off' technique.

In the following sections we suggest an alternative method which
provides estimates of p,-rather than some integral power of pj as in the
case of Cornell's method. Secondly, it utilizes independent partial
totals as against the use of over-lapping partial totals in the case of
Agha's method. Also in most of the cases this method yields a
smaller residual sum of squares than other methods. In case of log
transformation of the observations, it is generally noticed that for
large t, the curve is approximately a straight line. In such situations
the modified form of the proposed method based on sequential esti
mation technique performs better over the other methods. The
proposed method of course, require equally spaced data as required
by Cornell and Agha methods.

2. General Estimation Procedure

Consider first the general model (1.1) with p exponentials,

p

J'W™ 2 "•

Also to implement the procedure, we assume n=2mp—\, and
observations are specified only at equally spaced values of t. Number
of observations is equal to «+l, =2p m, that is, m times the number
of paranieters in the model.

The estimation procedure is as follows:
Partition the sample values into 2 p sums, Sh, given by

(m-1)

(2.1)
;=0
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/=0, 1, 2, , m—\,

= 2, ,2p.

These partial sums Sh, have expectations, su, given by

p 2pm

EM=S.- £ P-2)
/=!

Since are distinct, it is easy to verify that the polynomial,
St, satisfies the p diflFerence equations

'i,' 2,+i-,
2j (—1) Aj,+ji Sft+j =0,

/=!

^=0.1.2, ,p-\. (2.3)

where, for r=l, 2, ,/?, the elementary symmetric functions Ar
equals the sum of all possible products, that is,

A,=^ (PhPh --Pir), (2.4)

summation is over (/?,) different combinations. Replacing by the
corresponding observed partial sums, s^, in (2.3), we obtain

A

estimators Ar of the Ar from theequations

2p+l-i A

ZjC-l) Ar 5
ifi p+i-i/>+i
=0, 1, 2, (2.5)

Let ^ be a pxp matrix whose jtb column is (s,-, ...,
and ^ be the matrix obtained by replacing the (p4-l—7)th

column of ^ by the column vector s„+2,..., • Then .by
Cramer's rule we have

v.... : (2.6,
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Since the Ar estimate the elementry symmetric functions of the
Pj, the estimators rj of the pj is given by the p roots of the equation

Uil UJ lA^l
x"- T',, - ,"7. =0

IA\ lAl lAl
(2.7)

For estimators Aof the we take 71/=—logafj. The estimators
Oj of a,- are then obtained by solving any ;7-equations of the set

y=i

2pm

/ i-o-
;• 2p

1-0-
h=l, 2, 2p. (2.8)

The method of partial sums may similarly be applied to the
model (1.2). Here assume that there are n-\-\={2p i-l)m obser-

*

vations. We form the partial sums, ,

clearly,

£ si

(m-1)

=S y[f^+(2p+i)il
1=0

1=0, 1, 2, m—l,

h=l,2,...,2p + l.

J., • ( 1-9, )

From the 5^ we form the diflfeirences

h+\

and similarly define

« ♦ ♦

~ ^h ^h+l -

(2.9)

(2.10)

(2.11)

(2.12)



A METHOD FOR OBTAINING INITIAL ESTIMATES 27

Utilizing the same procedure as before for S'̂ and the solution

A /

for the estimators Ar of the A r is thes ame in terms of the as that

given by (2.6) in terms of the s^. Oj will be obtained in the same
manner as before. Estimator Aq of ocq is determined by

' ' (2.13)
( )7=1

There may be situations vs'here exponentials are well separated
in time (t), that is, when \ >>A^, {i>j, 2, yield data
known as 'decay type' data. In such situations a modification in
forming partial sums is recommended. Partialsums may be formed
sequentially withfirst 4p or 6p or 8/> observations for model(1.1) and
with first 2 (2;?+l), or 3 (2p-)r\) or 4 {2p-{-\) observations for model
(1.2). The initial estimates based on modified partial sums are
better if error variances are large. In pharmacokinetic studies it is
generally not practicable to collect data at equi-spaced time intervals
after some stage of collection of data. In such situations the modified
sequential estimation procedure of partial sums still works.

3. Examples

In this section we apply the estimation procedure developed
in Section 2 to the numerical examples reported by Cornell [1962]
and compare it with other methods due to Agha [1971], Cornell
[1962]>nd Foss [1969].

3.1. One Exponential Term

The data on counts describing the decay of the neutron density
in a medium-size assembly of beryllium is reported in Table 1.
Observations were made at equally spaced time interval of 0.1
milliseconds.
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Table 1

Decay of the Neutron Density in a Medium-Sized
Assembly of Beryllium.

t 0 1 2 3 4 5 6 7 8

y{i) 100145 78005 60305 46485 336205 28275 21705 16955 13045

t 9 10 11 12 13 14 15 16 17

10085 7835 6165 4782 3780 2915 2249 1752 1395

Cornell's estimators of p and a are

r„=0.776,06,

«„= 100,043.

Agha's estimators of p and a are

ra^O.77592,

fl,=100,089.

Estimators of p and « based on (2.7) and (2.8) are

r=0.77588.

a = 100,l56.

The residual sum of squares
ination methods are in Table 2.

-a fov the three esti-

Table 2

Method Res. S. S.

A 282,380

C 315,265

S 263,196

It is obvious that the proposed method gives a considerable
reduction in the residual sum of squares.
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3.2. Two Exponential Terms

29

We apply the various estimation methods to the data in Table
3. The observations describe the distribution of background pulses
generated in a proportional counter by neutron interaction with the
walls and gas plus pulses due to circuit noise. The pulse heights t
are recorded at equi-spaced intervals.

Table 3

Logarithms y{t) of Frequencies of Piilse Heigiits t Generated in a
Proportional Counter.

/ = 0 1 2 3 4 5 6 • 7

yQ) = 10.430 4.703 2.327 1.140 0.615 0.325 0.170 0.117

t <=• 8 9 10 11 12 13 14 15

y{0 = 0.05 0.04 0.046 0.022 0.036 0.021 0.018 0.016 :

The estimators of the parameters and the residual sum of
squares ^[y(t)--air\-~a2r*zY' are calculated for the various methods
and are given in Table 4.

Table 4

Method ri >•2 "1 •«2 . Res. S. S.

A 0.5490 0.2533 6.9284 3:4825 0.011,060,72

C 0,9961 0.4978 0.0220 9.9030 0.351,092,55

F 0.8596 0,3113 9.2941 1.1341 0.017,480,00

S 0.5046 0.0734 9.1854 1.2640 0.013,094,00

Notice that the reduction in residual sum of squares due to the
proposed method is drastic over Cornell's method and it compares
very well with Agha's method in this case.

A-ssuming that the random errors e{t) are independently and
normally distributed with means zero and common variance, the
iterative maximum likelihood estimators of Pi, pj, aj and were
obtained using the four sets of initial estimates. The results are
shown in Table 5.
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Table 5

Initial Esti
mates

Method

Maximum Likelihood Estimates

ri H "i

No. of
Itera

tions
Res. M. S.

A 0 5188 0.1860 8.3093 2.1207 7

-3

.35161x10

_3

C 0.3000 0.5519 4.13C5 6.2995 21 .45862x10

-3

F 0 5188 0.1860 8.3093 2.1207 32 .35161x10

-3

S 0.5188 0.1860 8.3093 2.1207 9 .35161x10

Notice tliat the iterative maximum likelihood estimators of the
parameters are the same for the initial valuss provided by all methods
except by Cornell's method. However, the number of iterations with
initialestimates by Foss's method are considerably large. Unfortuna
tely Cornell's methods does not seem to provide the right answer
inspite of 21 iterations and the residual mean square is also
considerably high.

4. Consistency of the Estimators

The partial-totals estimator are not in general unbiased since
they aresolution of polynomials, they are consistent estimators. The
proof ofconsistency follows along the lines ofCornell [1962] and we
outline it below for our case. Consider the model (1.1). Suppose
the errors are independently distributed for all t and are identically
distributed for all t in the same group. Define group means

h
m

Replacing the sum by the corresponding in equation (2.1) we
have by law of large numbers

2/)(m-])+/i p h+2pi

- r 2 Pi
/) lim jft =limm ^ "

oo m-> i ]

i=0, 1, 2, m-1,
2, •••j 2^.
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Letting m->oo, keeping the domain i constant in length, say T, the
m observations included in the hth group are made for

. (h-l)T (ft-DT T ih-l)T 2T
2pm ' 2pm m' 2pm m

(/»-!)r m-l y
2pm m

Now (4.1) may be written as
h—\ +m—l p ^

__ J_ 2p y y k
pVmyn'~T \im ^ L P

w—>co h—1 7=1

m

'W' (4-2)

The expression on right is definite integral equal to
p

U -r)
;=i

At the point r^=pi and lima^=ai for ally.

Then with the pj distinct as specified by our model, derivative
of all orders af the estimators and Oj are continuous in the neigh
borhood of ^ and Slutsky's Theorem as given by Cramer [1946, p.
255] is applied to show that rj and Uj converge in probability to p,
and cLj, respectively, for all j. Thus o and Uj are consistent estimators
of Pi and respectively, for ally when m->oo. This is also true for
the model with constant term ap added.

Summary

This paper describes a technique for obtaining the initial
estimates for fitting linear combinations of exponentials. The
method utilizes independent partial totals and provides a simple and
direct procedure for estimating the non-linear and the linear para
meters. Modifications are presented that make the estimation
procedure more versatile to decay-type data where the exponentials
are well separated. The procedure is illustrated with two example?
from the literature,
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